
Journal of tourism – studies and research in tourism

[Issue 28]

Eugenia IANCU

Stefan cel Mare University of Suceava, 720229, Romania

eiancu@seap.usv.ro

Aurel BURCIU

Stefan cel Mare University of Suceava, 720229, Romania

aurelb@usv.ro

Abstract

The emergence of the Internet has led to an explosion of web applications. The World Wide Web (www) has a

huge and permanent influence on our lives. Economy, industry, education, health, public administration are

components of our lives that have not been penetrated by the World Wide Web. The reason for this omnipresence

lies mainly in the nature of the web, characterized by the global and permanent availability but also by the

homogenous access to the information distributed globally produced by individuals in the form of web pages.

Initially, the web was designed as a purely informational environment, currently evolving into an application

environment. Semantic web technologies and ontologies respectively are used in the development of e-learning

systems in order to represent models and manage learning resources in a more explicit and efficient way.

Intelligent training techniques such as personalized learning and adaptive systems are a current concern in the

context of diversity of user profiles. The present work aims to construct an ontology using OWL (Ontology Web

Language) and RDF (Resource Description Framework) in the field of tourism and a platform for working with

ontologies. The platform that will be represented by a web application will allow users to expand an ontology by

adding new concepts such as classes, subclasses, individuals, properties, but also visualize the ontology in the

form of a knowledge graph. Also, users will be able to interact with the ontology by querying it using the SPARQL

language.

Key words: classes, concept, instance, ontologies, patterns, query

JEL Classification: L83, M15

I. INTRODUCTION

Today's web applications are fast and represent

complex software systems that offer interactive and

customizable services accessible through different

devices; they provide the ability to perform transactions

between users and usually store the data in a database.

The distinguishing element of web applications,

compared to traditional software applications, is how

the web is used: for example, its technologies and

standards are used as a development platform and as a

user platform at the same time. The World Wide Web

(WWW) has evolved since its inception through

several stages. The W3C consortium considers these

steps as (7):

1. Web 0.0 - Developing the Internet

2. Web 1.0 - The Internet prior to 1999 was

considered by experts as a read-only Internet. The

role of a user was just to read the information

presented to him. There was no active communication

or information flow from producer to consumer.

Virtually the first stage of the Web allowed users to

search and read information only.

3. Web 2.0 - The writing and participating web.

Due to the lack of active interaction of Internet users

with the Internet, Web 2.0 was born. The year 1999

marked the beginning of the "Read-Write-Publish"

era, which was marked by the appearance of "Live

Journal" (April 1999) and "Blogger" (August 1999).

Tim Berners Lee said about Web 2.0 that it is a "read-

write Web" and that users now have the ability to

contribute to the content of web pages and interact

with other users. This stage changed the drama of the

Internet and the world and was a response for users

who wanted to be more involved in what information

was available to them. Highlights of this stage include

Twitter, YouTube, Facebook, Flickr, which have

changed the concept of human interaction.

4. Web 3.0 - The semantic executing web "The

Semantic Web is an extension of the current Web that

allows the formal description of existing resources on

the Internet (web pages, text and multimedia

documents, databases, services, etc."). Tim Berners

Lee said that this web site is of the "write-read-

execute" type. The bases that will form web 3.0 will

be semantic markup and web service. Semantic

markup refers to the lack of communication between

human Internet users and computers. One of the most

The big challenges are finding a way to represent the

data so that it is understood by human users and

software agencies. By combining a semantic markup

WORK PLATFORMS WITH ONTOLOGIES IN TOURISM

Journal of tourism – studies and research in tourism

[Issue 28]

with a web service, Web 3.0 promises the potential of

applications that are able to speak directly and with

each other and look for information using simplified

interfaces. If Web 2.0 meant too much information,

Web 3.0 will bring you to the center of the stage

concepts such as personalized search, information

deduction, 3D Web.

5. Web 4.0 - Mobile Web This concept

involves a new version of the Internet based on what

we already have, but adapted to mobile devices. The

purpose of Web 4.0 is to connect all mobile devices

in both the real world and the virtual world.

6. Web 5.0 - Next Web. Tim Berners Lee says

Web 5.0 is "Open + Linked + Intelligent Web =

Emotional Web" Web 5.0 is still in development, but

signals show that this Web will be an Internet that

communicates with us as a kind of personal, access

assistant , is also called "symbiotic Web". This web

site will be of type "read-write-execution-

concurrency". At the center of this concept will be the

emotional interaction between people and computers.

This interchange will become a daily habit due to the

evolution of neuro-technology. At this moment, the

Internet is neutral because it does not perceive the

emotions and feelings of users. A representation of

the evolution of the Internet is depicted in Figure 1.

Source: https://flatworldbusiness.wordpress.com/flat-

education/previously/web-1-0-vs-web-2-0-vs-web-3-

0-a-bird-eye-on-the- definition /

Figure 1 Evolution of the Internet

The Internet has evolved a lot over the last ten

years and as such the possibilities of working with.

With the evolution of the Internet and the working

methods have become more and more complex. At

present we are talking about ontologies, possibilities of

working with ontologies, the coverage area with these

ontologies. Considering the most cited definitions in

the field, that of Gruber, "an ontology is a specification

of the conceptualization of a domain" (Gruber, 1993).

An ontology contains predicates, the semantics of

concepts and terms, but also how they relate to each

other. Other more recent definitions of ontologies speak

of these as a "knowledge graph" (Noy and McGuinness,

2001). A knowledge graph is the sum of an ontology

and a set of concrete instances of the classes.

The proposed application is part of the

applications that work with ontologies and is useful for

viewing, querying and extending ontologies.

The first objective of the project was the construction

of an ontology using the RDF standard and the OWL

language. The domain chosen for the construction of

the ontology was that of tourism. An ontology is a

catalog of the concepts existing in a domain.

Graphical ontology visualization.

One of the objectives of the application was to

offer users the opportunity to graphically visualize a

created or existing ontology. In order to do this, the user

will need the json file that he will upload to the

application and based on which the ontology graph will

be generated. The user will be able to choose for which

concepts he wants to generate / visualize the relations

of connection. This will use a graphing technology

provided by JavaScript called D3.js. By default D3 has

implementation for trees. As the ontology is a

knowledge graph, an algorithm will be implemented

that will allow to graphically represent the concepts in

the ontology. Java frameworks and ontologies

Because the application has logic written in Java, it was

necessary to find a way to work with .owl files in Java.

There are several Java frameworks that offer this. These

include (11,12,13):

• JAOB (Java Architecture for OWL Binding)

• OWL API - is a reference interface for creating,

manipulating and serializing OWL ontology)

• JENA Framework - is an open source framework that

allows you to build Linked Data, Semantic Web

applications and work with ontologies.

For this application, the Jena framework is used

because it offers an API for extracting and writing data

in a graph. Graphs are represented as abstract patterns

that can source data from files, from the database, from

URLs, or a combination of them. Also, models can be

queried using SPARQL. Jena is similar to Sesame, but

unlike this it offers support for OWL. It also has

internal reasoning engines such as Pellet Reasoner

(which is a Java representation of the OWL-DL

reasoning engine).

II. CREATION OF REST WEB SERVICES

In order to provide users with functions for handling

and querying ontologies, a number of REST services

have been created and implemented. The services will

interact with the interface through AJAX calls. The

Journal of tourism – studies and research in tourism

[Issue 28]

services created are the following:

• Service that allows to query an ontology in the form

of a SELECT type query;

• Service that allows querying an ontology in the form

of an ASK query;

• Service that allows querying an ontology in the form

of a CONSTRUCT query;

• Service that allows the addition of a specific court for

a given concept;

• Service that allows adding a new concept;

• Service that allows the addition of a new property;

• Service that allows adding a property to a particular

concept.

REST or representational state transfer is an

architectural style that consists of a set of components,

connectors and a distributed system and that focuses on

how the components communicate with each other. The

purpose of REST is to bring performance, simplicity,

scalability, simplicity, visibility, portability to web

services. There are some architectural constraints that

must be met by any REST services and I will detail in

the following:

• Server Client - a uniform interface separates server

clients. For example, customers are not interested in

how data is stored (this only concerns servers), so it

increases the portability of the client code. Servers are

not interested in interface or status, so they can be

simpler and more scalable. Servers and clients can be

replaced and developed separately from each other, as

long as the connection between them (the interface) is

not affected.

• Cacheable - responses must be defined (explicitly or

implicitly) as cacheable or not, in order to prevent

clients from using inaccurate data in response to the

following requests to the server. This can eliminate

some of the interactions between client and server,

improving performance and scalability.

• Stateless - communication between client and server

is constrained by the fact that no context from the client

should be stored on the server between successive

requests from the client. The session status can be

transferred from the server to a specific service such as

a database to maintain a persistent state for a certain

period. The customer starts sending requests when they

are ready to move to a new state.

• Layered system - the client cannot specify whether it

is connected to the central server or to an intermediate

server. Proxy servers can improve system scalability by

enabling load balancing (this means that requests from

clients are distributed to less loaded servers) or by

providing copies of Chace. This can also lead to

improved security policies.

• Uniform interface - the uniform interface is a

fundamental constraint of any REST service. It is the

one that simplifies and decouples the architecture, so

that the client and the server are completely

independent.

For an interface to be uniform it must meet the

following conditions:

• Identification of resources - individual resources are

defined using URIs. Resources are separate from the

representation that is returned to the client. For

example, the server can send data in HTML, XML or

JSON format, even if they are not among the server's

internal representations.

• Manipulation of resources through these

representations - when a client holds the representation

of a resource, it has sufficient information to modify or

delete the resource.

• Self-descriptive messages - each message must

include information on how the message should be

processed.

Web services that adhere to REST specifications are

called RESTful APIs and are defined under the

following aspects:

1. Have a basic URL;

2. A data type: Usually it is JSON, but it can be any

media type on the Internet

3. With the standard HTTP method: GET, POST, PUT,

DELETE, OPTIONS

III. CREATING THE WEB INTERFACE

One of the objectives of the application was the

implementation of an interface using the web services

described in the previous point. The purpose of this

interface is to provide users with the tools they need to

be able to extend, manipulate, view and query an

ontology in OWL format.The application must respond

to a series of requirements that have the purpose of

functioning properly:

Response time - being a web application, the

acceptable response time is in the order of milliseconds.

Given that the application has a graphical part of the

ontology using the javascript D3 library, the generation

and loading time of the graph should be around tens of

milliseconds. Also, the data transmission from the

interface to the server, as well as vice versa, must be in

the order of tens of milliseconds.

Responsibility - the user interface should be a

"responsive" one. The concept of “responsive” can be

defined as the property of the interface to respond

promptly to the user's requests, without blocking or

letting the user wait. We can look at the response time

as the time difference from when a user action

generates an event and until a response is received as a

consequence of the event.

Scalability - In the software industry, scalability

is defined as the property of a software application /

system to properly support a larger volume of loading

or to allow its expansion or extension. Thus the

application will have to behave the same for a small

number of users, but also for a large number. Also,

being a modular application that is based on REST web

services, it can be easily expanded to add new features.

Journal of tourism – studies and research in tourism

[Issue 28]

Reliability - the concept of reliability is translated by

the tolerance to errors and the degree of recovery after

the production of errors. Thus, the application must

support the possibility for users to enter the data

incorrectly, otherwise there must be a validation of the

data being entered. Data validation can be performed

both on the interface side and on the server side. Also,

data validation also helps prevent data attacks such as

XSS Attacks. Because owl files will be able to be

uploaded, there will also need to be validation functions

to validate what kind of files users can upload.

Testing - The application will have to work properly in

the scenario in which the data is entered correctly.

Thus, in this scenario, the results obtained are those of

expectation, but also in the scenario where there are

errors in the data entry. In this case, suggestive error

messages will appear and the data processing will not

continue.

IV. SPARQL

It is a language that allows us to write queries

for ontologies. It resembles SQL and uses the same

triplet structure. Next I will try to present some of the

features of SPARQL and how it can be used.

The SPARQL language is based on the triplet structure.

The structure of triplets is similar to that of the RDF

(subject - predicate - object) with the only difference

the subject, predicate and object can be variable instead

of RDF terms. These triples are combined with a graph

model where exact matching is required to find the

results.

Similar to the namespace mechanism in RDF,

SPARQL lets us define prefixes for namespaces and

use them in queries to make them shorter and more

readable.

SPARQL does not explicitly support RDFS

semantics. So the query result depends on whether the

system supports RDFS semantics. If yes, then the result

of this query will include all instances of the subclasses

of that class. If not, then only those instances that

explicitly have the class type will be returned.

Using triple select-from-where Like SQL,

queries in SPARQL have a form like SELECT-FROM-

WHERE. SELECT specifies the number and order of

the data to be returned, FROM specifies the source to

be used for querying, and WHERE imposes constraints

on possible solutions in the form of Boolean constraints

or graph templates. The FROM clause is optional: when

not specified, we can suppose that we query the

knowledge base of a particular system.

For example, to get all the phone numbers of

staff members, we can write a query like:

SELECT ?x ?y

WHERE

{ ?x uni:phone ?y . }

Here? x and? y are variable, and? x uni:

phone? y represents a source-property-value pattern.

More complicated patterns can be created to obtain

complex information from queries. For example, to

return all students and their phone numbers, we can

write a query like:

SELECT ?x ?y

WHERE

{ ?x rdf:type uni:Student ; uni:phone ?y . }

Queries in SPARQL

Here the clause? x rdf: type uni: Student collects

all instances of the Student class and assigns the result

of the variable? x. The second part collects all the

triples with the predicate phone. This query has an

implicit join in which we restrict the second part only

tox. For this the syntax is used; which indicates that the

next triple will have the same subject as the previous

one. So, the above query is equivalent to this:

SELECT ?x ?y

WHERE

{ ?x rdf:type uni:\student . ?x uni:phone ?y . }

The following demonstrates an explicit join of a

query that returns the name of all the disciplines that the

student has passed with ID 646352:

SELECT ?n

WHERE

{ ?x rdf:type uni:Discipline ; uni:isTaughtBy

:646352 . ?c uni:name ?n .

FILTER (?c = ?x).

}

SPARQL uses a FILTER condition to indicate

true or false constraints. Above, constraint is the

explicit join of variables? c and? x by using the equality

operator (=).

Optional Patterns

All the above patterns are required. Either

the knowledge base matches the pattern in which case

it returns a result, or not, in which the query will return

nothing. However, sometimes we want to be more

flexible. Let's look at the following example:

<uni:student rdf:about="646352">

<uni:name>Grigoras Claudiu</uni:name>

</uni:student>

<uni:student rdf:about="646318">

<uni:name>David Bores</uni:name>

<uni:email>david@yahoo.com</uni:email>

</uni:student>
This excerpt contains information about two

students. For one of the students, only the name is

displayed, for the other, the e-mail address is also

displayed. Now we want to write a query that will

return the names of all students and their email

addresses.

SELECT ?name ?email

WHERE

{

?x rdf:type uni:Student ;

uni:name ?name ;

uni:email ?email .

Journal of tourism – studies and research in tourism

[Issue 28]

}

The result of this query will be? Name?

Email David Bores david@yahoo.com.

So, although Grigoras Claudiu is listed as a student, the

question will not return his name because he does not

have an e-mail address and does not fit the pattern. As

a solution, we can adapt the query to use an optional

pattern:

SELECT ?name ?email

WHERE

{

?x rdf:type uni:Student ; uni:name ?name

.

OPTIONAL { ?x uni:email ?email }

}

This query: "returns all students' names and if

their email address is also known" and the result will

look like this:? Name? Email Grigoras Claudiu David

Bores david@yahoo.com.

In this part of the article I tried as much as

possible to render the basic functionalities of the

SPARQL language used in the application.

The ontology I developed is a small ontology on

-Tbox: terminal box - is that part of the ontology

that contains the concepts defined by it. Here are the

entities: ontology classes, object properties, properties

-Abox: assertion box - represents that part of the

ontology that contains the instances of the ontology

concepts.

An ontology brings together concepts with

individual named courts. The ontology structure we

developed (with the help of Protege) is shown below.

The classes with the corresponding subclasses are the

following: Accomodation (BedAndBreakfast,

BudgetAccomodation, Campground,

CountryHouse, Hostel, Hotel -> LuxuryHotel, Inn,

Pension), Activity (Adventure – Alpinism,

BunjeeJumping, CliffJumping, Diving

(CaveDiving, ScubaDiving), ExtremeSport,

Mountainbiking, Rafting, CulturalActivity –

Cinema, Opera, Theater, Event – Concert,

Exposition, Relaxation – Beach, Dance, Shopping,

Sunbathing, ExperienceBath, Sport – AirSport,

Alpinism, Bowling, Boxing, ExtremeSport, Golf,

Hiking, HorseRiding, MindSport, Mountainbiking,

Tennis, WaterSport, WinterSports), BlogPost,

Destination (Country – City (Capital), County,

RuralArea – Village, UrbanArea),

EatingAndDrinking (Bakery, CashAndCarry,

HerbsAndSpice, Market - Supermarket,

OrganicHealthAndKosherFood – Restaurant

(ChineseRestaurant, ItalianRestaurant,

TraditionalRomanianRestaurant)) Season (Spring,

Summer, Autumn, Winter), Transport (Air –

Airport, Helipad, RoadAndRail, Water – Boat

Station, FerryStation, TransportAccessPoint – Bus

Stop, MetroStation, Parking, RailwayStation,

TaxiStation, TramStation, UndergroundEntrance).

Object properties are: axNumber, has

Author, hasAddress, hasContent, hasDescription,

hasImage, hasLat, hasLong, hasMaxBedNo,

hasName, hasEnglishName, hasRoomNo,

hasShortName, hasSource, hasStars, hasTag,

hasTitle, hasWebpage, importDate, link (wikipedia,

dbpedia, freebase, wikitravel), phoneNumber,

populationOf, publicationDate, refferedBy,

wikipediaContent, wikitravelContent

Figure 2 The ontology structure

The application is a web platform that allows

working with ontologies. Thus the users have the

following functionalities:

• I can upload a json file to the application. The

.json file is a conversion of the owl file. The

transformation will be done with the converter and that

comes with the application;

• Based on the uploaded json file you can

generate a graph for the loaded ontology;

• I can add instances for specific classes in

ontology;

• I can add a new property within the ontology;

• I can add a new property to a concept within

the ontology;

• I can export all properties within the ontology

in an XML format;

• I can write queries using SPARQL to get

ontology information. The queries that can be written

are of three types: CONSTRUCT type, ASK type and

SELECT type. Examples for these types of queries and

how they can be used will be presented in the testing

part of the application.

mailto:david@yahoo.com

Journal of tourism – studies and research in tourism

[Issue 28]

V. COMPONENTS OF THE APPLICATION

The application has three major components:

• The ontology created

• Back-end part (application logic)

• The user interface part.

Next I will present implementation details about

the two back-end components and the interface one.

The back-end part contains the logic of the application

and is written in Java as REST web services. More

details on what a REST web service is and how it works

have been presented previously. Basically the

application has five REST services that communicate

with the interface. Each service performs a particular

functionality and is mapped to an HTTP method (for all

services in the application the method is POST) and has

a URL mapped to the code that can be accessed. These

services are mapped to Java classes as follows:

• AddIndividualsService - allows the user to add

an instance to an ontology class. It receives from the

interface the names of the ontology, its namespace, the

instance and the class to which it belongs and assigns

in the ontology the instance of the class.

• AddPropertyToIndividualService - allows the

user to add a property to a court. It receives from the

interface the ontology names, its namespace, the name

and value of the property and the instance, and adds in

the ontology the property for that instance.

• CreateObjectPropertyService - allows the user

to add a property within the ontology. It receives from

the interface the ontology name, its namespace, the

name, the domain and the value range of the property

and writes the property in the ontology.

• OntologyUtilsService is a two-way utility that

allows you to open and write an ontology.

• QueryingOntologyService - allows the user to

write queries of three types: SELECT, CONSTRUCT,

ASK. The service has three methods for the three types

of queries. Each method receives the ontology name,

namepace, IRI and the ontology prefix if defined, as

well as the query to execute and executes the query,

returning the results obtained in the interface.

Figure 3 shows a structure with a Service type

class.

Figure 3 Service class

Each service is mapped to a controller class. A

controller is an application class in which the

processing of a request from the interface begins. The

structure of a controller type class is detailed in the

Application Structure sub-chapter.

The application interface is built using HTML5,

CSS, JavaScript, D3.js, Angular.js and AJAX

technologies. HTML5 is used to build the interface.

The interface will look like in Figure 4 below:

Figure 4 Web application interface

CSS is used to style the HTML elements of the

interface. Javascript along with D3.js and Angular.js

framework will be used to create the graphical

visualization of the ontology. Ajax (Asynchronous

JavaScript and XML) is a technology used to create

interactive web applications. Ajax is used to exchange

amounts of data with the server.

VI. RESULTS

Application validation refers to data validation.

This is done on both the interface and server side. The

data entered by the user is validated on the interface

side. The same data is also validated on the server side.

If the data is not conclusive with the validation, the user

will be informed by the corresponding error messages.

Next, I will present three test scenarios: in the

first scenario, a new instance will be added, in the

second one a few SPARQL queries will be written to

obtain relevant information about concepts, and in the

third one the ontology graph will be created. .

The first test scenario: Adding a court for a

concept. In the following, I will reproduce the steps

taken with the appropriate images.

A restaurant named "Zamca" will be added in

the "TraditionalRomanianRestaurant" category. In this

case, the court is "Zamca" and the class name is

"TraditionalRomanianRestaurant". Figure 5 shows the

completion of the required fields.

1. The user fills in the interface name of the

court and the name of the class to which the court is

added.

2. The user clicks on the Add Individual button

and the court is added.

Journal of tourism – studies and research in tourism

[Issue 28]

Figure 5 Fill in the fields when launching the

application

3. To observe the new court, you can use Protect

or write a SPARQL query that returns all the restaurants

in the class: “TraditionalRomanianRestaurant”.

The second test scenario: Writing SPARQL

queries. In this test scenario we will write two SPARQL

queries.

1. The user will write the first query that will

return all the restaurants in the

TraditionalRomanianRestaurant category together with

their number of stars. The query looks like Figure 6.

Because it is a Select query, you will press the Select

Query button.

Figure 6 SPARQL query

Third test scenario: Generation of the ontology

graph. To get the graph, the user will perform the

following steps:

1. Press the Generate Graph button. After

pressing it, a window will appear as in Figure 7:

Figure 7 Generation of a graph

2. The user will select the json file corresponding to the

owl file (in the image above it is Tourism.json) and

click Open. The graph will be generated as in Figure 8

Figure 8 The graph generated by the application

Initially, the graph will have only the Thing

object. In order to be able to extend a concept (view its

subclasses) or to be able to narrow a concept (view its

subclasses), the user will have to click on that concept.

The application was developed using the Eclipse STS

IDE (Eclipse Spring Tool Suite), Java 8, Tomcat 8, and

Node.js development environment. Java 8 (JDK 1.8) or

later, a Tomcat server (version 8 or later) and a Node.js

server for Angula are required to install the application

and run it locally.

VII. CONCLUSION

The purpose of this work was to build an

ontology in the field of tourism and to create a platform

that allows the visualization, extension and

interrogation of the created ontology. The three main

objectives resulting from the functional requirements w

• Visualization: graphical ontology creation

using D3.js and Angular.js;

• Expansion: the possibility to add instances,

properties, new concepts by using the JENA framework

that allows working with ontologies in Java;

• Query: Adding a SPARQL + JENA module

that allows the user to write queries to get information

about ontology concepts.

The application is error-tolerant and alerts the

user with appropriate messages when an error or

operation that could not be completed has occurred;

being a modular application with a 3 tier architecture in

which the interface and logic are clearly delimited, the

modification or addition of new functionalities is very

easy.

A further development that can be brought to the

application is the further extension of the ontology by

automating this process. One way to do this is by using

crawlers to parse pages of information (such as

wikipedia, dbpedia, wikitravel, etc.), parse data, and

save them in the ontology.

Another development we are considering is the

creation of a system for recommending tourist locations

(points of interest, hotels, restaurants, etc.) based on the

Journal of tourism – studies and research in tourism

[Issue 28]

opinions of other users. This could be achieved through

opinions expressed on travel blogs or specific sites.

You can also make a version on mobile devices. The

application being made in Java and based on RESTful

web services, its transformation into a mobile

application only involves the development of an

interface adapted to mobile devices. This would result

in increased portability and number of users.

Although a conclusion may review the main

points of the paper, do not replicate the abstract as the

conclusion. A conclusion might elaborate on the

importance of the work or suggest applications and

extensions. Make sure that the whole text of your paper

observes the textual arrangement on this page.

VIII. REFERENCES

1. Corcho, O., Fernández-López, M., Gómez-Pérez, A., (2003), Methodologies, tools and languages for building ontologies: where is their

meeting point? Data & Knowledge Engineering, 46 (1), July, pp. 41 - 64 , Elsevier Science, Amsterdam. Fikes

2. Dean Allemang, Jim Hendler, (2008) - Semantic Web for the Working Ontologist – Effective modelling in RDFS and OWL, Morgan
Kaufmann Publishers

3. Gruber T.R. (1993) - A Translation Approach to Portable Ontology Specifications, Standford, California

4. Mari Carmen Suarez-Figueroa, Asuncion Gomez Perez, Enrico Motta, Aldo Gangemi, (2012) - Ontology Engineering in a Networked
World, Springer

5. Noy, N.F. and McGuinness, D.L. (2001) Ontology Development 101: A Guide to Creating Your First Ontology. Stan- ford Knowledge

Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, 1-25
6. Shelley Powers, (2003) - Practical RDF, Sebastopol, O’Reilly & Associates

7. https://flatworldbusiness.wordpress.com/flat-education/previously/web-1-0-vs-web-2-0-vs-web-3-0-a-bird-eye-on-the-definition/

8. http://www.topicmaps.org/
9. http://andrei.clubcisco.ro/cursuri/f/f-sym/4ioc/labs/RDF_OWL.pdf

10. https://jena.apache.org/documentation/ontology/

11. http://wiki.yoshtec.com/jaob
12. http://owlapi.sourceforge.net/documentation.html

https://flatworldbusiness.wordpress.com/flat-education/previously/web-1-0-vs-web-2-0-vs-web-3-0-a-bird-eye-on-the-definition/
http://www.topicmaps.org/
http://andrei.clubcisco.ro/cursuri/f/f-sym/4ioc/labs/RDF_OWL.pdf
https://jena.apache.org/documentation/ontology/
http://wiki.yoshtec.com/jaob
http://owlapi.sourceforge.net/documentation.html

